Sabtu, 13 November 2010

Terjadinya Karat Pada Logam

Karat merupakan hasil korosi, yaitu oksidasi suatu logam. Besi yang mengalami korosi membentuk karat dengan rumus Fe2O3.xH2O. Korosi atau proses pengaratan merupakan proses elektro kimia. Pada proses pengaratan, besi (Fe) bertindak sebagai pereduksi dan oksigen (O2) yang terlarut dalam air bertindak sebagai pengoksidasi. Persamaan reaksi pembentukan karat sebagai berikut:
Anoda: Fe(s) → Fe2+(aq) ) 2e- Katoda: O2(g) + 4H+(aq) + 4e- → 2H2O(l)
Karat yang terbentuk pada logam akan mempercepat proses pengaratan berikutnya. Oleh sebab itu, karat disebut juga dengan autokatalis. Mekanisme terjadinya korosi adalah logam besi yang letaknya jauh dari permukaan kontak dengan udara akan dioksidasi oleh ion Fe2+. Ion ini larut dalam tetesan air. Tempat terjadinya reaksi oksidasi di salah satu ujung tetesan air ini disebut anode. Ion Fe2+ yang terbentuk bergerak dari anode ke katode melalui logam. Elektron ini selanjutnya mereduksi oksigen dari udara dan menghasilkan air. Ujung tetesan air tempat terjadinya reaksi reduksi ini disebut katode. Sebagian oksigen dari udara larut dalam tetesan air dan mengoksidasi Fe2+ menjadiFe3+ yang membentuk karat besi (Fe2O3.H2O).

Besi atau logam yang berkarat bersifat rapuh, mudah larut, dan bercampur dengan logam lain, serta bersifat racun. Hal ini tentu berbahaya dan merugikan. Jika berkarat, besi yang digunakan sebagai pondasi alau penyangga jembatan menjadi rapuh sehingga mudah ambruk. Alat-alat produksi dalam industri makanan dan farmasi tidak boleh menggunakan menggunakan logam yang mudah berkarat. Hal ini disebabkan karat yang terbentuk mudah larut dalam makanan, obat-obatan, atau senyawa kimia yang diproduksi. Oleh sebab itu, untuk kepentingan industri biasanya menggunakan peralatan stainless yang antikarat.

Kerugian yang cukup besar akibat proses pengaratan mengharuskan adanya upaya-upaya pencegahan terjadinya karat. Prinsip pencegahan nya dengan cara melindungi besi dan penyebab terjadinya karat. dilihat dari faktor-faktor yang memengaruhi proses pengaratan besi, banyak cara pencegahan yang dapat dilakukan, seperti modifikasi lingkungan, modifikasi besi, proteksi katodik, dan pelapisan.
  • Cara modifikasi lingkungan. Oksigen (O2) dan kelembaban udara merupakan faktor penting dalam proses pengaratan, mengurangi kadar oksigen atau menurunkan kelembaban udara dapat memperlambat proses pengantaraan. Sebagai contoh, kelembaban di dalam gudang dapat dikurangi dengan mendinginkan gudang menggunakan pengondisi udara (Air Conditioner / AC).
  • Cara modifikasi besi. Ketika besi membentuk aloi (logam campuran) dengan unsur-unsur tertentu, besi akan lebih tahan terhadap pengaratan. Baja (aloi dari besi) mengandung sebelas persen hingga dua belas persen kromium dan sedikit mengandung karbon, disebut stainless steel. Baja ini ini tahan karat dan sering digunakan dalam industri, untuk bahan kimia, dan di rumh tangga.
  • Cara proteksi katodik. Jika logam besi dihubungkan dengan seng, besi tersebut akan sukar mengalami korosi. Hal ini disebabkan seng lebih mudah teroksidasi dibandingkan dengan besi. Potensi reduksi besi adalah E°Zn2+|Zn = -0.76V, lebih negatif dari pada potensi reduksi besi, yaitu sebesar E°Fe2+|Fe = -0.44V. Seng akan beraksi dengan oksigen dan air dalam lingkungan yang mengandung karbon dioksida. Seng karbonat yang terbentuk berfungsi melindungi seng itu sendiri dari korosi. Cara perlindungan logam seperti ini disebut cara proteksi katodik (Katode Pelindung). Selain seng (Zn), logam magnesium (Mg) yang termasuk alkali tanah, banyak digunakan untuk keperluan ini.
  • Cara pelapisan. Jika logam besi dilapisi tembaga atau timah, besi akan terlindung dari korosi. Sebab logam Cu (E°Cu2+|Cu = +0.34V) dan Sn( E°Sn2+|Sn =-0.14V) memiliki potensi reduksi yang lebih positif dari pada besi (E°Fe2+|Fe = -0.44V). Namun, bila lapisan ini bocor, sehingga lapisan tembaga atau timah terbuka, besi akan mengalami korosi yang lebih cepat. Selain dengan tembaga dan timah, besi juga dapat dilapisi dengan logam lain yang sulit teroksidasi. Logam yang dapat digunakan adalah yang memiliki potensial reduksi lebih positif dibandingkan besi, seperti perak, emas, nikel, timah, tembaga, dan platina. Selain senyawa logam, pelapisan dapat pula menggunakan senyawa nonlogam. Proses pelapisan logam besi ini dapat dengan cara membersihkan besi terlebih dahulu, kemudian melapis dengan suatu zat yang sukar ditembus oleh oksigen, misalnya cat, gelas, plastik, atau vaselin (gemuk). Perlu diperhatikan, seluruh permukaan besi harus terlapis sempurna untuk menghindarkan kontak dengan oksigen. Proses pelapisan yang tidak sempurna dapat lebih berbahaya dibandingkan besi tanpa pelapis. Pengaratan dapat terjadi pada bagian yang tertutup sehingga tidak terdeteksi. (Sumber:  http://id.wikipedia/wiki/karat)

Selasa, 09 November 2010

Radiasi Suhu (Kalor) Matahari

Perpindahan kalor dengan cara Radiasi
Selain berpindah dari tempat yang memiliki suhu lebih tinggi menuju tempat yang memiliki suhu lebih rendah dengan cara konduksi dan konveksi, kalor juga bisa berpindah tempat dengan cara radiasi. Bedanya, perpindahan kalor dengan cara konduksi dan konveksi membutuhkan medium. Sebaliknya, perpindahan kalor dengan cara radiasi tidak membutuhkan medium. Dirimu jangan pake bingung dengan istilah medium. Yang dimaksudkan dengan medium adalah benda-benda yang berfungsi sebagai penghantar kalor. Penghantar kalor yang baik menggunakan cara konduksi adalah zat padat. Sedangkan penghantar kalor yang baik menggunakan cara konveksi adalah zat cair dan zat gas. Nah, perpindahan kalor dengan cara radiasi tidak menggunakan penghantar. Kok bisa ya ?…. yupz
Radiasi sebenarnya merupakan perpindahan kalor dalam bentuk gelombang elektromagnetik, seperti cahaya tampak (merah, jingga, kuning, hijau, biru, nila, ungu dll), infra merah dan ultraviolet alias ultra ungu. Mengenai gelombang elektromagnetik akan kita kupas tuntas dalam pokok bahasan tersendiri.
Salah satu contoh perpindahan kalor dengan cara radiasi adalah perpindahan kalor dari matahari menuju bumi. Matahari memiliki suhu lebih tinggi (sekitar 6000 K), sedangkan bumi memiliki suhuyang lebih rendah. Karena terdapat perbedaan suhu antara matahari dan bumi, maka secara otomatis kalor mengungsi dari matahari (suhu lebih tinggi) menuju bumi (suhu lebih rendah). Seandainya perpindahan kalor dari matahari menuju bumi memerlukan perantara aliasmedium , maka kalor tidak mungkin tiba di bumi. Persoalannya si kalor harus melewati ruang hampa (atau hampir hampa alias kosong melompong). Jika tidak ada sumbangan kalor dari matahari, maka kehidupan di bumi tidak akan pernah ada. Ingat ya, kalor tuh energiyang berpindah. Kehidupan kita di planet bumi sangat bergantung pada energi yang disumbangkan oleh matahari. Nah, energi bisa berpindah dari matahari ke bumi dalam bentuk kalor alias panas.
Contoh lain dari perpindahan kalor dengan cara radiasi adalah panas yang dirasakan ketika kita berada di dekat nyala api. Panas yang kita rasakan bukan disebabkan oleh udara yang kepanasan akibat adanya nyala api. Seperti yang telah gurumuda jelaskan pada pokok bahasan konveksi, biasanya udara yang kepanasan memuai sehingga massa jenisnya berkurang. Akibatnya, udara yang massa jenisnya berkurang tadi meluncur ke atas, tidak meluncur ke arah kita. Mirip seperti asap yang keluar lewat cerobong. Kita bisa merasa hangat atau kepanasan ketika berada di dekat nyala api karena kalor berpindah dengan cara radiasi dari nyala api (suhu lebih tinggi) menuju tubuh kita (suhu lebih rendah). Dengankata lain, kita bisa merasa hangat atau kepanasan karena adanya energi yang berpindah dengan cara radiasi dari nyala api menuju tubuh.
Perpindahan kalor dengan cara radiasi sedikit berbeda dibandingkan dengan perpindahan kalor dengan cara konduksi dan konveksi. Perpindahan kalor dengan cara konduksi dan konveksi terjadi ketika benda-bendayang memiliki perbedaan suhu saling bersentuhan. Sebaliknya, perpindahan kalor dengan cara radiasi bisa terjadi tanpa adanya sentuhan. Matahari dan bumi tidak saling bersentuhan, tetapi kalor bisa mengungsi dari matahari menuju bumi. Demikian juga nyala api dan tubuh kita tidak saling bersentuhan, tetapi tubuh bisa kepanasan kalau kita berdiri di dekat nyala api.
Laju perpindahan kalor dengan cara radiasi
Laju perpindahan kalor dengan cara radiasi ditemukan sebanding dengan luas benda dan pangkat empat suhu mutlak (Skala Kelvin) benda tersebut. Benda yang memiliki luas permukaan yang lebih besar memiliki laju perpindahan kalor yang lebih besar dibandingkan dengan benda yang memiliki luas permukaan yang lebih kecil. Demikian juga, benda yang bersuhu 2000 Kelvin, misalnya, memiliki laju perpindahan kalor sebesar 24 = 16 kali lebih besar dibandingkan dengan benda yang bersuhu 1000 Kelvin. Hasil ini ditemukan oleh om Josef Stefan pada tahun 1879 dan diturunkan secara teoritis oleh om Ludwig Boltzmann sekitar 5 tahun kemudian. Secara matematisbisa ditulis sebagai berikut :
radiasi-1
Keterangan :
radiasi-2
Catatan :
Pertama, kalor merupakan energi yang berpindah. Lebih tepatnya kalor merupakan energi yang berpindah akibat adanya perbedaan suhu.
Kedua, laju perpindahan kalor = jumlah kalor yang berpindah tempat selama selang waktu tertentu.
Ketiga, kata radiasi bisa berarti pancaran, demikian juga kata meradiasikan bisa berarti memancarkan. Kita menggunakan kata memancarkan karena kalor berpindah tempat menggunakan gelombang elektromagnetik (tidak pake perantara).
Keempat, kata memancarkan dan menyerap tuh artinya berbeda. Kalau memancarkan, berarti kalor ditendang keluar. Tapi kalau menyerap, berarti kalor disedot habis2an.
Kelima, kadang gurumuda pakai istilah perpindahan kalor, kadang pake istilah radiasi energi. Kalor tuh energi yang berpindah. Si kalor bisa berpindah tempat dengan cara radiasi. Karenanya, kita juga bisa menggunakan istilah radiasi energi atau radiasi. Jangan pake bingung… Lanjut ya
Benda yang permukaannya berwarna gelap (hitam pekat, seperti arang) memiliki emisivitas mendekati 1, sedangkan benda yang berwarna terang memiliki emisivitas mendekati 0. Semakin besar emisivitas suatu benda (e mendekati 1), semakin besar laju kaloryang dipancarkan benda tersebut. Sebaliknya, semakin kecil emisivitas suatu benda (e mendekati 0), semakin kecil laju kalor yang dipancarkan. Kita bisa mengatakan bahwa benda yang berwarna gelap (warna hitam dkk) biasanya memancarkan kalor yang lebih banyak dibandingkan dengan benda yang berwarna terang (warna putih dkk).
Besarnya emisivitas tidak hanya menentukan kemampuan suatu benda dalam memancarkan kalor tetapi juga kemampuan suatu benda dalam menyerap kaloryang dipancarkan oleh benda lain. Benda yang memiliki emisivitas mendekati 1 (benda yang berwarna gelap) menyerap hampir semua kalor yang dipancarkan padanya. Hanya sebagian kecil saja yang dipantulkan. Sebaliknya, benda yang memiliki emisivitas mendekati 0 (benda yang berwarna terang) menyerap sedikit kalor yang dipancarkan padanya. Sebagian besar kalor dipantulkan oleh benda tersebut.
Benda yang menyerap semua kalor yang dipancarkan padanya memiliki emisivitas = 1. Benda jenis ini dikenal dengan julukan benda hitam. Dinamakan benda hitam bukan berarti benda tersebut berwarna hitam. Benda hitam sebenarnya merupakan sebuah benda ideal saja. Btw, konsep benda hitam ideal ini penting karena laju radiasi benda ini secara teoritisbisa dihitung. Mengenai benda hitam akan kita oprek dalam pokok bahasan tersendiri.
Berdasarkan ulasan panjang pendek di atas, bisa disimpulkan bahwa benda yang memiliki emisivitas mendekati 1 (benda yang nyaris hitam pekat) merupakan pemancar sekaligus sebagai penyerap kalor yang baik. Sebaliknya, benda yang memiliki emisivitas mendekati 0 (benda yang berwarna terang) merupakan pemancar dan penyerap kalor yang buruk.
Seperti yang telah dibahas sebelumnya, setiap benda, apapun itu, selain memancarkan kalor, juga bisa menyerap kalor yang dipancarkan oleh benda lain. Misalnya terdapat dua benda, sebut saja benda 1 dan benda 2. Benda 1 berada di dekat benda 2. Benda 1 memancarkan kalor, benda 2 juga memancarkan kalor. Nah, selain memancarkan kalor, benda 1 pasti menyerap kalor yang dipancarkan benda 2. Demikian juga sebaliknya, selain memancarkan kalor, benda 2 pasti menyerap kalor yang dipancarkan oleh benda 1. Karenanya untuk menghitung laju total perpindahan kalor yang dipancarkan oleh benda 1 atau benda 2, kita tidak bisa menggunakan persamaan om Stefan-Boltzmann di atas. Persamaan di atas hanya bisa digunakan untuk menentukan laju perpindahan kalor yang dipancarkan oleh sebuah benda (dengan anggapan tidak ada benda lain yang berada di sekitar benda tersebut). Jadi kita perlu mengoprek persamaan di atas untuk memperoleh persamaan yang sesuai dengan kondisi ini. Untuk menurunkan persamaan yang dimaksud, gurumuda tetap menggunakan ilustrasi benda 1 dan benda 2.
Misalnya benda 1 memiliki emisivitas e, suhu T1 dan luas permukaannya A. Laju perpindahan kalor yang dipancarkan oleh benda 1 sebanding dengan pangkat empat suhu mutlak T1, emisivitas e dan luas permukaan A. Secara matematis ditulis sebagai berikut :
radiasi-3Agar perpindahan kalor bisa terjadi maka harus terdapat perbedaan suhu. Karenanya suhu benda 1 berbeda dengan suhu benda 2. Benda 2 memiliki suhu T2. Laju kalor yang dipancarkan benda 2 sebanding dengan pangkat empat suhu T2. Karena kalor yang dipancarkan benda 2 diserap oleh benda 1, maka laju kalor yang diserap benda 1 juga sebanding dengan pangkat empat suhu T2.
Karena terdapat kalor yang dipancarkan dan kalor yang diserap oleh benda 1, maka laju total kalor yang dipancarkan oleh benda 1 adalah :
radiasi-4Ini persamaan yang kita cari. Persamaan ini digunakan untuk menentukan laju total kalor yang dipancarkan oleh sebuah benda. Yang dimaksudkan dengan laju total kalor adalah selisih antara laju kalor yang pancarkan dan laju kalor yang diserap.
Pemancaran dan penyerapan kalor dengan cara radiasi akan terhenti jika kedua benda tersebut berada dalam keseimbangan termal (suhu kedua benda sama). Jadi apabila T1 = T2, maka Q/t = 0.
Apabila kalor yang dipancarkan benda 1 lebih banyak daripada kalor yang diserapnya, maka suhu benda 1 menurun sedangkan suhu benda 2 meningkat. Suhu benda 2 meningkat karena benda 2 menyerap kalor yang dipancarkan benda 1. Sebaliknya, jika kalor yang diserap benda 1 lebih banyak daripada kalor yang dipancarkannya maka suhu benda 1 meningkat sedangkan suhu benda 2 menurun.
Contoh soal 1 :
Sebuah benda berbentuk kubus dengan panjang salah satu sisi kubus = 2 meter. Suhu benda = 100 oC dan emisivitas benda = 0,2. Tentukan laju kalor yang dipancarkan benda setiap detik…
Panduan Jawaban :
Suhu benda (T) = 100 oC + 273,15 = 373,15 K (suhu benda harus diubah ke dalam skala Kelvin)
Emisivitas (e) = 0,2 (emisivitas tidak punya satuan)
Luas benda (A) = sisi x sisi = 2 m x 2 m = 4 m2
Konstanta Stefan-Boltzmann = 5,67 x 10-8 W/m2.K4
Sekarang kita oprek laju aliran kalor yang dipancarkan benda
radiasi-5
Watt = Joule/sekon = J/s (satuan Energi per waktu alias satuan Daya)
1 Watt = 1 Joule/sekon
879,5 Watt = 879,5 Joule/sekon
Benda memancarkan 879,5 Joule per detik.
Contoh soal 2 :
Seorang anak yang lagi bugil alias tidak berpakaian sedang berada dalam sebuah kamar. Luas permukaan tubuh anak tersebut = 2 m2, suhu kulitnya = 30 oC dan emisivitasnya = 0,8. Jika suhu kamar = 20 oC, berapakah laju kalor yang hilang setiap detik dari tubuh si anak ?
Panduan Jawaban :
Suhu anak (T1) = 30 oC + 273,15 = 303,15 K
Suhu kamar (T2) = 20 oC + 273,15 = 293,15 K
Emisivitas (e) = 0,8
Luas tubuh (A) = 2 m2
Konstanta Stefan-Boltzmann = 5,67 x 10-8 W/m2.K4
Ok, tancap gas….
radiasi-6
96,16 Watt = 96,16 Joule/sekon
Laju kalor yang lenyap dari tubuh si anak adalah 96,16 Joule per detik.
Laju kalor yang dipancarkan matahari (Laju radiasi matahari)
Sejak pagi sampai sore, kita selalu kebanjiran kalor dari matahari. Saking baik hatinya matahari, kalor yang disumbangkan kepada kita kadang overdosis sehingga tubuh kita kepanasan. Apalagi orang yang kulitnya agak hitam seperti gurumuda. Wah, kalau siang rasanya dingin sekali… Ok, kembali ke laptop. Seperti biasa, untuk menghitung laju perpindahan kalor dari matahari, tentu saja kita membutuhkan bantuan rumus. Rumus lagi, rumus lagi…. pusink dah ;)
Berdasarkan hasil perhitungan (sesuai dengan kenyataan), ditemukan bahwa terdapat kalor sebesar 1350 Joule per sekon per meter persegi yang mengungsi dari matahari menuju planet bumi di mana dirimu dan diriku berada. Pada hari yang cerah (tidak ada awan), terdapat kalor sebesar 1000 Joule per sekon per meter persegi yang tiba dengan selamat di permukaan bumi. Pada hari yang tidak cerah (banyak awannya), sekitar 70 % kalor diserap oleh atmosfir bumi. Rakus juga ya si atmosfir… Jadi hanya 30 % kalor yang tiba dengan selamat di permukaan bumi. Besarnya kalor yang lenyap di atmosfir bumi tergantung pada banyak atau sedikitnya awan yang menggelayut manja di langit.
Jumlah kalor sebesar 1350 Joule per sekon per meter persegi dikenal dengan julukan konstanta matahari. Karena Joule per sekon (J/s) = Watt, maka kita bisa menulis kembali konstanta matahari menjadi 1350 Watt per meter persegi = 1350 W/m2
Ketika kalor yang dipancarkan oleh matahari tiba di permukaan bumi, kalor tersebut diserap oleh benda hidup ;) dan benda mati yang berada di permukaan bumi. Laju penyerapan kalor bergantung pada emisivitas (e) benda tersebut, luas permukaan benda dan sudut yang dibentuk oleh sinar matahari dengan garis yang tegak lurus permukaan benda. Untuk memudahkan pemahamanmu, tataplah gambar di bawah dengan penuh kelembutan.
radiasi-7
Secara matematis, laju penyerapan kalor bisa ditulis sebagai berikut :
radiasi-8
Keterangan :
radiasi-9
Pada siang hari, sinar matahari sejajar atau berhimpit dengan garis yang tegak lurus permukaan bumi (Sudut yang dibentuk = 0). Amati gambar di bawah…
radiasi-11
Karena sudut yang dibentuk = 0o, maka laju penyerapan kalor adalah :
radiasi-111
Laju penyerapan kalor (Q/t) bernilai maksimum jika sudut yang dibentuk sinar matahari dengan garis yang tegak lurus permukaan bumi = 0o (cos 0 = 1). Biasanya ini terjadi pada siang hari, di mana matahari kesayangan kita tepat berada di atas kepala. Jadi tidak perlu heran kalau siang hari rasanya panas sekali.
Pada pagi hari dan sore hari, sudut yang terbentuk mendekati 90o. Amati gambar di bawah…
radiasi-12
Besar sudut yang mendekati 90o bisa saja 70o, 75o, 80o, 85o dll. Berdasarkan gambar di atas, sudut yang terbentuk sekitar 80o (Ini cuma perkiraan kasar saja). Seandainya sudut yang terbentuk adalah 80o, maka laju penyerapan kalor adalah :
radiasi-13
Laju kalor (Q/t) pada pagi hari dan sore hari bernilai minimum karena cos teta mendekati nol. Semakin kecil cos teta, semakin kecil laju penyerapan kalor (Q/t). Hal ini yang menjadi alasan mengapa pada pagi hari atau sore hari kita tidak merasa panas.
Pada saat matahari terbenam di ufuk barat atau hendak terbit di ufuk timur, sudut yang terbentuk = 90o. Amati gambar di bawah…
radiasi-14
Karena sudut yang dibentuk = 90o, maka laju penyerapan kalor adalah :
radiasi-15
Laju penyerapan kalor (Q/t) pada saat matahari terbenam di ufuk barat atau hendak terbit di ufuk timur = 0. Jadi tidak ada kalor yang disedot. Ya iyalah, sinar matahari saja tidak ada. Mau disedot apanya…. Pada siang hari matahari baik hati sekali ya, tapi kalau menjelang malam matahari berubah menjadi sangat pelit ;) Kayanya perlu dikasih pelajaran tuh
Penerapan radiasi
Salah satu penerapan perpindahan kalor dengan cara radiasi adalah termografi. Alatnya dinamakan termograf. Termograf biasa digunakan untuk mendeteksi tumor, kanker dkk. Jalan ceritanya seperti ini… Biasanya proses metabolisme pada bagian tubuh yang ada tumor atau kanker cukup tinggi. Karenanya suhu bagian tubuh tersebut lebih tinggi. Ingat ya, semakin tinggi suhu, semakin banyak kalor yang dipancarkan alias diradiasikan. Nah, tugas si termograf adalah menscan alias mengukur besarnya kalor yang diradiasikan oleh semua bagian tubuh. Bagian tubuh yang memancarkan kalor paling banyak tentu saja pantas dicurigai… Selanjutnya harus dimata-matai, jika sangat membahayakan sebaiknya dipoton.
(diambil dari www.gurumuda.com)

UVCOOL SOLUSI BAGI RUANG KERJA DAN RUMAH

UVCOOL adalah cat berbasis air yang berfungsi untuk meredam panas, suara
dan karat dapat diaplikasikan pada:
1. Zinc, Galvalume, Asbes, Zincalume         3. Kontainer, Mobil Box, Tangki
2. Dinding, Genteng, Beton                         4. Polikarbonat, Fiber, Box Pendingin

Manfaat Ketika Musim Kemarau :
1. Penghematan listrik dengan berkurangnya penggunaan AC dan kipas angin
     - Karena suhu ruangan kerja lebih dingin (menjadi 28-30 derajat celcius)
2. Produktivitas pekerja semakin tinggi dan hasil kerja semakin meningkat
3. Mengurangi resiko kebakaran
Manfaat Ketika Musim Hujan:
1. Dapat meredam bunyi nyaring sampai 70% sehingga:
    - Komunikasi antar pekerja berlangsung baik
    - Konsentrasi pekerja terjaga
2. Anti Bocor (Water Proffing) dan Anti Hujan Asam

SPESIFIKASI UVCOOL
1. Daya Sebar : 3 m /Kg (3 lapis  160-180 mikron)
2. Cara Kerja  : Menggunakan Kuas dan bisa dispray
3. Kering Sentuh : 10 Menit
    Kering Keras : < 1 jam
4. Tahan Asam dan Basa : PH 1-14
5. Titik Leleh : 350 derajat celcius
6. Aman untuk kulit, iritasi sedang di mata dan
    tidak beracun
7. Standart Warna : Putih (Super White)

APLIKASI CAT UVCOOL
 
1. Permukaan Zinc bebas dari minyak, pengecatan
    lapis pertama menggunakan UVCOOL Zinc Coat
    tipis dan rata. Ulangi pengecatan dengan Zinc 
    Coat sekali lagi setelah 1 jam. Biarkan sampai
    kering keras.

2. Lapisan yang ketiga menggunakan UVCOOL
   Top Coat merupakan pelindung dari debu, garam
   yang korosif karena bersifat spotless sehingga
   tidak mudah kotor dan tahan lama.











GLOBAL WARMING SOLUTION






Cahaya Matahari sebagai Partikel dan Gelombang Elektromagnetik


Cahaya merupakan gelombang elektromagnetik yaitu gelombang yang tidak memerlukan medium untuk merambat. Sehingga cahaya dapat merambat tanpa memerlukan medium. Oleh karena itu, cahaya matahari dapat sampai ke bumi dan memberi kehidupan di dalamnya. Cahaya merambat dengan sangat cepat, yaitu dengan kecepatan 3 × 108 m/s, artinya dalam waktu satu sekon cahaya dapat menempuh jarak 300.000.000 m atau 300.000 km. 
Setiap benda yang memancarkan cahaya disebut sumber cahaya dan setiap benda yang tidak dapat memancarkan cahaya disebut benda gelap. Benda-benda yang termasuk benda gelap dapat digolongkan sebagai berikut:
  1. Benda tembus cahaya, yaitu benda yang dapat meneruskan cahaya yang diterimanya. Benda tembus cahaya dapat dikelompokkan lagi menjadi benda bening dan benda baur. Contoh benda bening adalah kaca dan air jernih, sedangkan contoh benda baur adalah es dan air keruh.
  2. Benda tak tembus cahaya, yaitu benda yang tidak dapat meneruskan cahaya yang diterimanya. Contohnya adalah batu, tanah, kayu, dan besi.
Sebagai gelombang, cahaya mempunyai sifat-sifat gelombang di antaranya cahaya dapat merambat. Bagaimana bentuk perambatan cahaya? Perhatikan ketika cahaya matahari melalui lubang angin di rumahmu. Jika udara sedikit berdebu, kamu dapat melihat bahwa cahaya merambat membentuk sebuah garis lurus. Hal serupa terjadi ketika kamu melihat seberkas cahaya dari lubang kecil masuk ke dalam kamarmu yang gelap. Terlihat bahwa cahaya merambat dalam arah gerak lurus.

Misalnya ketika Matahari bersinar cerah, tiba-tiba ada sekumpulan awan yang menghalangi cahayanya. Kamu dapat melihat bahwa daerah di bawah awan tersebut menjadi teduh. Suasana teduh ini disebabkan adanya bayangan dari awan. Suatu penghalang, semakin sukar ditembus cahaya semakin gelap bayangan yang terbentuk. Kamu dapat melihat bayangan badanmu ketika badanmu terkena sinar. Bayangan badanmu akan tampak hitam karena badanmu sama sekali tidak dapat ditembus cahaya. Lain halnya jika segumpal awan tipis menghalangi sinar Matahari. Meskipun terjadi bayangan, bayangan ini tidak terlalu pekat.
Berdasarkan pekat tidaknya suatu bayangan, bayangan dapat dibedakan menjadi dua jenis.
  1. Bayangan umbra, yaitu bayangan yang benar-benar gelap dengan kata lain bayangan yang tidak mendapat cahaya sama sekali.
  2. Bayangan penumbra, yaitu bayangan yang tidak terlalu gelap dengan kata lain bayangan yang masih mendapatkan cahaya.
Warna-warna dalam cahaya matahari
Apakah teman-teman mengetahui sebenarnya berwarna apakah cahaya matahari itu? Ya, benar. Sebenarnya cahaya matahari yang terlihat putih itu terdiri dari tujuh warna lain yaitu:
Merah
Jingga
Kuning
Hijau
Biru
Nila (Indigo)
Ungu
Apabila ketujuh warna ini bercampur, cahaya putih akan dihasilkan. Warna-warna dalam cahaya putih matahari dapat dipecahkan dengan menggunakan prisma menjadi jalur warna. Jalur warna ini dikenal sebagai spektrum sedangkan pemecahan cahaya putih kepada spektrum ini dikenal sebagai penyerakan cahaya. Pelangi adalah contoh spektrum yang terbentuk secara alamiah. Pelangi terbentuk selepas hujan, ketika cahaya matahari dibiaskan oleh tetesan air hujan. Tetesan air itu hujan bertindak sebagai prisma yang menyerakkan cahaya matahari menjadi tujuh warna
Sifat Cahaya
Sifat-sifat cahaya ialah, cahaya bergerak lurus ke semua arah. Buktinya adalah kita dapat melihat sebuah lampu yang menyala dari segala penjuru dalam sebuah ruang gelap. Apabila cahaya terhalang, bayangan yang dihasilkan disebabkan cahaya yang bergerak lurus tidak dapat berbelok. Namun cahaya dapat dipantulkan
Teori tentang cahaya
Teori abad ke-10
Ilmuwan Abu Ali Hasan Ibn Al-Haitham (965–sekitar 1040), dikenal juga sebagai Alhazen, mengembangkan teori yang menjelaskan penglihatan, menggunakan geometri dan anatomi. Teori itu menyatakan bahwa setiap titik pada daerah yang tersinari cahaya, mengeluarkan sinar cahaya ke segala arah, namun hanya satu sinar dari setiap titik yang masuk ke mata secara tegak lurus yang dapat dilihat. Cahaya lain yang mengenai mata tidak secara tegak lurus tidak dapat dilihat. Dia menggunakan kamera lubang jarum sebagai contoh, yang menampilkan sebuah citra terbalik. Alhazen menganggap bahwa sinar cahaya adalah kumpulan partikel kecil yang bergerak pada kecepatan tertentu. Dia juga mengembangkan teori Ptolemy tentang refraksi cahaya namun usaha Alhazen tidak dikenal di Eropa sampai pada akhir abad 16.
Teori Partikel
Isaac Newton menyatakan dalam Hypothesis of Light pada 1675 bahwa cahaya terdiri dari partikel halus (corpuscles) yang memancar ke semua arah dari sumbernya. Teori ini dapat digunakan untuk menerangkan pantulan cahaya, tetapi hanya dapat menerangkan pembiasan dengan menganggap cahaya menjadi lebih cepat ketika memasuki medium yang padat tumpat karena daya tarik gravitasi lebih kuat.
Teori Gelombang (atau Ray)
Christiaan Huygens menyatakan dalam abad ke-17 yang cahaya dipancarkan ke semua arah sebagai ciri-ciri gelombang. Pandangan ini menggantikan teori partikel halus. Ini disebabkan oleh karena gelombang tidak diganggu oleh gravitasi, dan gelombang menjadi lebih lambat ketika memasuki medium yang lebih padat. Teori gelombang ini menyatakan bahwa gelombang cahaya akan berinterferensi dengan gelombang cahaya yang lain seperti gelombang bunyi (seperti yang disebut oleh Thomas Young pada kurun ke-18), dan cahaya dapat dipolarisasikan. Kelemahan teori ini adalah gelombang cahaya seperti gelombang bunyi, memerlukan medium untuk dihantar. Suatu hipotesis yang disebut luminiferous aether telah diusulkan, tetapi hipotesis itu tidak disetujui.
Teori Elektromagnetik
Pada 1845 Faraday menemukan bahwa sudut polarisasi dari sebuah sinar cahaya ketika sinar tersebut masuk melewati material pemolarisasi dapat diubah dengan medan magnet.Ini adalah bukti pertama kalau cahaya berhubungan dengan Elektromagnetisme. Faraday mengusulkan pada tahun 1847 bahwa cahaya adalah getaran elektromagnetik berfrekuensi tinggi yang dapat bertahan walaupun tidak ada medium.
Teori ini diusulkan oleh James Clerk Maxwell pada akhir abad ke-19, menyebut bahwa gelombang cahaya adalah gelombang elektromagnet sehingga tidak memerlukan medium untuk merambat. Pada permukaannya dianggap gelombang cahaya disebarkan melalui kerangka acuan yang tertentu, seperti aether, tetapi teori relativitas khusus menggantikan anggapan ini. Teori elektromagnet menunjukkan yang sinar kasat mata adalah sebagian daripada spektrum elektromagnet. Teknologi penghantaran radio diciptakan berdasarkan teori ini dan masih digunakan.
Kecepatan cahaya yang konstan berdasarkan persamaan Maxwell berlawanan dengan hukum-hukum mekanis gerakan yang telah bertahan sejak zaman Galileo, yang menyatakan bahwa segala macam laju adalah relatif terhadap laju sang pengamat. Pemecahan terhadap kontradiksi ini kelak akan ditemukan oleh Albert Einstein.
Teori Kuantum
Teori ini di mulai pada abad ke-19 oleh Max Planck, yang menyatakan pada tahun 1900 bahwa sinar cahaya adalah terdiri dari paket (kuantum) tenaga yang dikenal sebagai photon. Penghargaan Nobel menghadiahkan Planck anugerah fisika pada 1918 untuk kerja-kerjanya dalam penemuan teori kuantum, walaupun dia bukannya orang yang pertama memperkenalkan prinsip asas partikel cahaya.
Teori Dualitas Partikel-Gelombang
Teori ini menggabungkan tiga teori yang sebelumnya, dan menyatakan bahwa cahaya adalah partikel dan gelombang. Ini adalah teori modern yang menjelaskan sifat-sifat cahaya, dan bahkan sifat-sifat partikel secara umum. Teori ini pertama kali dijelaskan oleh Albert Einstein pada awal abad 20, berdasarkan dari karya tulisnya tentang efek fotolistrik, dan hasil penelitian Planck. Einstein menunjukkan bahwa energi sebuah foton sebanding dengan frekuensinya.
Lebih umum lagi, teori tersebut menjelaskan bahwa semua benda mempunyai sifat partikel dan gelombang, dan berbagai macam eksperimen dapat di lakukan untuk membuktikannya. Sifat partikel dapat lebih mudah dilihat apabila sebuah objek mempunyai massa yang besar. Pada pada tahun 1924 eksperimen oleh Louis de Broglie menunjukan elektron juga mempunyai sifat dualitas partikel-gelombang. Einstein mendapatkan penghargaan Nobel pada tahun 1921 atas karyanya tentang dualitas partikel-gelombang pada foton, dan de Broglie mengikuti jejaknya pada tahun 1929 untuk partikel-partikel yang lain. 

 
UVCOOL DITEMUKAN SEBAGAI INOVASI DUNIA
Teori cahaya matahari sebagai partikel dan gelombang elektromagnetik, Cat UVCOOL ditemukan dengan cara memantulkan cahaya matahari absolut oleh sebuah Formula Khusus yang terdiri atas Material Alam yang dapat Memantulkan Cahaya dan tambahan bahan yang memberi Kekuatan dan Ketahanan Terhadap asam dan Basa ekstrem (Tahan pada PH 1-14). Apabila material yang dicat menggunakan Cat UVCOOL akan memantulkan Cahaya matahari tersebut sehingga material tersebut tetap dingin dan hanya menerima radiasi panas dari suhu disekitarnya. Prinsip-prinsip inilah yang digunakan dalam menemuan Dahsyat UVCOOL.

Cara Menghitung Kebutuhan AC Ruangan

Ada satu cara sederhana untuk menghitung besarnya kapasitas pendinginan AC (dalam satuan Btu/hr atau pk) yang dibutuhkan untuk mengkondisikan suatu ruangan. Langkah pertama adalah menghitung luasan ruang yang akan dipasangi AC. Selanjutnya kalikan dengan standar panas dalam ruangan seluas 1 meter persegi, 500 Btu/hr. Misal, ruangan berukuran 3×4 meter. Untuk menghitung AC yang dibutuhkan: luas ruangan (3×4 m2)x500 Btu/hr=6.000 Btu/hr.

Biasanya satuan daya AC yang dikenal di pasaran adalah pk. Untuk mengetahuinya, konversikan saja hitungan tadi ke dalam satuan pk. Untuk mengetahuinya konversikan saja hitungan tadi ke dalam satuan pk. Caranya, 1/2 pk setara dengan 5.000 Btu/hr, 3/4 pk setara 7.000 Btu/hr, 1 pk setara 9.000 Btu/hr, 1,5 pk setara 12.000 Btu/hr, 2 pk setara 18.000 Btu/hr dan 2,5 pk setara dengan 24.000 Btu/hr.
Yang perlu diperhatikan, kapasitas AC harus lebih tinggi dari panas ruangan yang harus “ditangani.” Misal hasil hitungan diperoleh kebutuhan 6.000 Btu/hr, berarti kapasitas AC yang dibutuhkan 7.000 Btu/hr atau setara 3/4 pk.


STUDI KASUS

Jika ada Ruangan sebagai berikut:
1. Panjang : 30 meter
2. Lebar : 6 meter
3. Tinggi : 4 meter

Jawabannya adalah:

Kebutuhan AC ruangan tersebut adalah:
1. Panjang : 30 meter (= 98.4 feet)
2. Lebar : 6 meter (= 19.68 feet)
3. Tinggi : 4 meter (= 13.12 feet)


Perhitungan kebutuhan AC dalam satuan BTU adalah =
(98.4×19.68×13.12xIxE)/60


dimana I memiliki nilai 10 jika ruang berinsulasi (berada di lantai bawah, atau berhimpit dengan ruang lain).
Nilai 18 jika ruang tidak berinsulasi (di lantai atas).
E memiliki nilai 16 jika dinding terpanjang menghadap utara; nilai 17 jika dinding terpanjang menghadap timur;
Nilai 18 jika dinding terpanjang menghadap selatan; dan nilai 20 jika dinding terpanjang menghadap barat.
Karena kami tidak mengetahui infiormasi tentang kondisi ruangan bapak (apakah berada di lantai bawah/atas, dan kearah mana dinding terpanjangnya menghadap), maka kami mengasumsikan bahwa ruangan bapak berada di lantai bawah (nilai I = 10), dan dinding terpanjang menghadap selatan (nilai E = 18). Sehingga hasil perhitungannya adalah :
(98.4×19.68×13.12x10x18)/60 = 76221,11 BTU (nilai ini setara dengan 9 PK)
Jadi kebutuhan pengkondisi udara di ruangan tersebut adalah 9 PK (dengan asumsi seperti yang dibuat, namun jika kondisi di lapangan berbeda dengan asumsi bahwa ternyata ruangan tersebut tidak berada di lantai bawah dan dinding terpanjang tidak menghadap selatan, maka hanya tinggal mengganti nilai I dan E nya)

Catatan:
Kapasitas AC berdasarkan PK:

AC ½ PK = ± 5.000 BTU/h
AC ¾ PK = ± 7.000 BTU/h
AC 1 PK = ± 9.000 BTU/h
AC 1½ PK = ±12.000 BTU/h
AC 2 PK = ±18.000 BTU/h


(Diambil dari www.19design.wordpress.com)

Prinsip-Prinsip Angin Berhembus



Dalam pelajaran ilmu pengetahuan alam yang mulai diajarkan di sekolah dasar, angin didefinisikan sebagai udara yang bergerak dari tekanan tinggi ke tekanan rendah, atau bergerak dari daerah yang suhu udaranya rendah ke arah daerah yang suhu udaranya tinggi. Prinsip dasarnya, udara yang bergerak ini muncul sebagai akibat adanya perbedaan tekanan atau bisa pula karena rotasi bumi.

Lalu apa yang dimaksud dengan angin barat?
Angin barat termasuk ke dalam salah satu jenis angin musim. Angin barat ini terjadi akibat sebagian udara di daerah maksimum subtropis utara dan selatan mengalir ke daerah sedang di utara dan selatan. Di bumi bagian selatan, angin barat bisa bertiup sangat kencang, yang oleh kalangan pelaut dinamakan roaring forties.

Kalau ada angin barat, tentu ada angin timur. Berbeda dengan angin barat, angin timur ini bertiup dari daerah kutub utara dan selatan ke daerah minum subpolar atau daerah yang berada pada 60 derajat lintang utara dan 60 derajat lintang selatan. Angin timur bersumber dari daerah bertekanan udara maksimum yang terdapat di daerah kutub utara dan kutub selatan. Angin timur ini terasa dingin karena bersumber dari daerah kutub.

Selain angin barat dan angin timur, yang termasuk ke dalam angin musim adalah angin passat, angin anti-passat, dan angin muson.
Angin passat adalah angin yang bertiup dari daerah subtropis menuju daerah khatulistiwa, dan bertiup sepanjang tahun. Sebaliknya angin yang bertiup dari khatulistiwa ke daerah kutub dan turun di daerah maksimum subtropis, dinamakan angin anti-passat.
Angin muson berhembus secara teratur setiap 3 bulan sekali, dan diantara periode yang satu arahnya akan berlawanan setiap setengah tahun. Pergerakan angin muson ini yang menjadi penyebab musim penghujan di belahan bumi Indonesia.

Selain dikenal 5 macam angin musim, ada juga yang dinamakan dengan angin lokal. Ada tiga jenis lokal yaitu angin laut dan angin darat serta angin gunung dan angin lembah.
Angin darat adalah udara yang bergerak di malam hari dari darat ke laut, karena pada malam hari tekanan maksimum terjadi di darat sementara tekanan minimun terjadi di laut. Sebaliknya pada siang hari, angin bertiup dari laut ke darat karena pada siang hari daratan lebih cepat menerima panas.

Hampir sama dengan angin laut dan angin darat, angin lembah dan angin gunung juga sifatnya lokal karena hanya terjadi pada lembah dan gunung saja. Pada siang hari udara yang berada di daerah lembah lebih cepat panas akibat terkurung, dibanding dengan udara yang berada di puncak gunung yang lebih terbuka

Dengan demikian, angin bergerak dari lembah ke puncak gunung yang disebut angin lembah. Demikian sebaliknya yang terjadi pada malam hari, udara di puncak gunung lebih cepat dingin sehingga menyebabkan angin bergerak dari puncak gunung menuju lembah yang kemudian dinamakan sebagai angin gunung. (Diambil dari www.anneahira.com)

Badai Matahari 2012 dan Pengaruh Bagi Kehidupan di Bumi

Menurut laporan website Inggris “New Scientist”, maksud dari badai matahari atau solar storm adalah siklus kegiatan peledakan dahsyat dari masa puncak kegiatan bintik matahari (sunspot), biasanya setiap 11 tahun akan memasuki periode aktivitas badai matahari. Ilmuwan Amerika baru-baru ini memperingatkan bahwa pada tahun 2012 bumi akan mengalami badai matahari dahsyat (Solar Blast), daya rusakanya akan jauh lebih besar dari badai angin “Katrina”, dan hampir semua manusia di bumi tidak akan dapat melepaskan diri dari dampak bencananya.

Badai Matahari Kuat pada 2012 akan Menyerang

Pada 22 September 2012 tengah malam, langit New York, Manhattan Amerika Serikat akan tertutupi oleh seberkas layar cahaya yang warna-warni.Di wilayah selatan New York ini, sangat sedikit orang yang dapat melihat fenomena aurora ini. Namun, perasaan menikmati indahnya pemandangan alam ini tidak akan berlangsung lama. Setelah beberapa detik, semua bola lampu listrik di wilayah tersebut mulai gelap dan berkedip tak menentu, kemudian sinar cahayanya dalam seketika tiba-tiba bertambah terang, dan cahaya bola lampu menjadi luar biasa terang. Selanjutnya, semua lampu mati. 90 detik kemudian, seluruh bagian Timur Amerika Serikat akan mengalami pemadaman listrik. Setahun kemudian, jutaan orang Amerika mulai mati, infrastruktur negara akan menjadi timbunan puing. Bank Dunia akan mengumumkan Amerika berubah menjadi negara berkembang. Pada saat yang sama, Eropa, China dan Jepang dan daerah lain atau negara juga akan sama seperti Amerika Serikat, berjuang dalam bencana sekali ini. bencana ini datang dari badai matahari atau solar storm yang dahsyat, terjadi pada permukaan matahari yang berjarak 150 juta km dari bumi.

Mungkin Membawa Dampak Bencana Besar pada Bumi

Ilmuwan Amerika Serikat memperingatkan bahwa, pada 2012 badai matahari yang kuat di bumi akan membawa malapetaka besar pada manusia, yang akan mempengaruhi setiap aspek pada masyarakat modern sekarang. Para ahli yang mengeluarkan peringatan meng-atakan, dampak badai matahari pada bumi kemungkinan adalah “efek domino”. Coba pikirkan, bila jaringan listrik menjadi rapuh dan tidak stabil, hal-hal yang berhubungan dengan bisnis pasokan listrik juga akan menjadi korban: peralatan refrigeration berhenti, makanan dan obat-obatan yang tersimpan dalam ruang berpendingin dalam jumlah besar akan kehi-langan kondisi penyimpanan dan rusak; pompa tiba-tiba berhenti berfungsi, air minum pada masyarakat akan menjadi masalah. Selain itu, karena gangguan pada sinyal satelit, sistem posisi GPS akan menjadi sampah. Sebenarnya pada awal 1859 pernah terjadi kasus serupa, peledakan badai matahari saat itu bahkan me-ngakibatkan jaringan telegram terbakar rusak. Tentu saja sekarang ini di bumi sudah dipenuhi oleh fasilitas kabel dan nirkabel, tetapi fasilitas ini sulit menahan ujian badai matahari.
Ketika badai matahari kuat menyerang, umat manusia di bumi akan menghadapi dua masalah besar. Pertama, adalah tentang masalah jaringan listrik modern sekarang. Jaringan listrik modern sekarang pada umumnya menggunakan tegangan tinggi untuk mencakup daerah lebih luas, ini akan memungkinkan operasi jaringan listrik lebih efisien, Anda bisa mengurangi kerugian selama transmisi listrik, juga kerugian listrik karena produksi yang berlebihan. Namun, secara bersama ia juga menjadi lebih rentan terhadap serangan cuaca ruang angkasa. transmisi jaringan akan menjadi sangat rentan dan tidak stabil, atau bahkan mungkin menyebabkan terhenti secara total. dan ini hanya merupakan efek domino yang pertama, selanjutnya mungkin juga akan menyebabkan “lalu lintas lumpuh, komunikasi terputus, industri keuangan runtuh dan fasilitas umum kacau; pompa berhenti menyebabkan pasokan air minum terputus, kurangnya fasilitas pendingin, makanan dan obat-obatan sulit disimpan secara efektif. Para ilmuwan telah memperkirakan bila ada intensitas badai matahari kuat mungkin dapat menyebabkan kerugian sosial dan ekonomi manusia, hanya pada tahun pertama saja kerugiannya mencapai 1-2 triliun dollar AS, sementara pemulihan dan rekonstruksinya diperlukan setidaknya 4-10 tahun
Isu yang kedua adalah tentang masalah sistem jaringan listrik yang saling ketergantungan yang dukungan kehidupan modern kita, seperti masalah air dan penanganan limbah, masalah infrastruktur logistik supermarket, masalah pengendalian gardu listrik, pasar keuangan dan lainnya yang tergantung pada listrik. Jika dua masalah digabung jadi satu, kita dapat dengan jelas melihat bahwa peristiwa kemungkinan muncul kembalinya badai matahari Carrington sangat mungkin akan menyebabkan bencana besar yang langka. Adviser laporan khusus dari National Academy of Sciences Amerika Serikat dan analis daya listrik industri John Kappenman menganggap “Bencana seperti ini dibandingkan dengan bencana yang biasa kita bayangkan secara total berlawanan. biasanya wilayah kurang berkembang rawan serangan bencana, namun dalam bencana ini, wilayah yang semakin berkembang lebih rentan terhadap serangan bencana.”

Manusia Belum Mempersiapkan Diri

Menghadapi kemungkinan bencana serius yang akan me-nimpa, Amerika Serikat dan seluruh umat manusia tidak segera merespon untuk mempersiapkan pekerjaan secara baik dalam menghadapi putaran badai matahari berikutnya. Becker me-ngatakan bahwa karena kemungkinan terjadinya skala besar badai matahari sangat kecil, “Seluruh masyarakat bahkan tidak menanggapinya, namun hanya memperhatikan masalah di hadapan mata”. Terhadap cuaca di bumi, para ahli cuaca dapat melacak badai yang akan menimpa selama beberapa hari ke depan, dan mengeluarkan peringatan yang sesuai kepada penduduk setempat, namun badai matahari atau cuaca ruang angkasa benar-benar berbeda. Backer mengatakan bahwa sekarang ini kita masih tidak dapat memprediksi secara akurat waktu dan kekuatan badai matahari, yang dapat diprediksi oleh saya dan rekan saya hanya jika sebuah badai matahari besar menyerang, kami secara mutlak tidak mampu menanganinya.”
Ini mirip dengan peringatan dini bencana angin topan dan manusia di bumi, dewasa ini umat manusia terutama tergantung pada prediksi dari siklus sunspot untuk memantau intensitas badai matahari serta dampaknya pada bumi. Yang dimaksud dengan sunspot adalah proses peningkatan dan pengurangan yang berarti dalam jumlah sunspot setiap 11 tahun. Siklus dihitung mulai dari aktivitas terendah sunspot pada matahari. Dalam masa aktif sunspot akan meningkat, badai matahari yang terjadi akan lebih banyak. Ketika badai matahari terjadi, partikel kecepatan tinggi serta aliran ion yang terbentuk oleh partikel bermuatan listrik yang dipancarkan secara besar-besaran oleh matahari akan berpengaruh terhadap lapisan medan magnit bumi, ionosfir serta kondisi atmosfir netral. Dalam masalah dampak bahaya badai matahari, lebih dari satu abad, orang-orang terus memantau kegiatan sunspot.
Berdasarkan fenomena yang terjadi di atas permukaan matahari serta data bintik matahari siklus yang terjadi sebelumnya, para ilmuwan dari National Center for Atmospheric Research, NCAR, Amerika Serikat, berhasil mengembangkan sebuah model baru ilmu dinamika solar. Dengan model baru, para astronom dapat memberikan peringatan secara dini dari aktivitas sunspot matahari. Mereka berharap bahwa peringatan dini dapat membantu perusahaan-perusahaan listrik, para pengendali satelit dan aspek lainnya dalam beberapa hari atau bahkan tahun-tahun sebelumnya agar bisa bersiap-siap menghadapai kegiatan sunspot matahari. Menurut informasi, ketepatan model baru ini dapat mencapai akurasi 98%. Richard Enke dari National Science Foundation, Departemen Atmospheric Research Amerika Serikat mengatakan bahwa jika dapat secara dini memprediksi aktivitas badai matahari, orang-orang akan dapat dengan baik menanggulangi gangguan seperti komunikasi, kegagalan satelit, pemadaman listrik, serta ancaman terhadap astronot dan hal-hal lain.(Erabaru.or.id/lim)